Rounding Voronoi Diagram

نویسندگان

  • Olivier Devillers
  • Pierre-Marie Gandoin
چکیده

Computational geometry classically assumes real-number arithmetic which does not exist in actual computers. A solution consists in using integer coordinates for data and exact arithmetic for computations. This approach implies that if the results of an algorithm are the input of another, these results must be rounded to match this hypothesis of integer coordinates. In this paper, we treat the case of two-dimensional Voronoi diagrams and are interested in rounding the Voronoi vertices at grid points while interesting properties of the Voronoi diagram are preserved. These properties are the planarity of the embedding and the convexity of the cells, we give a condition on the grid size to ensure that rounding to the nearest grid point preserve the properties. We also present heuristics to round vertices (not to the nearest) and preserve these properties. Key-words: geometric computing, Voronoi diagram, integer coordinates, exact computations This work was partially supported by ESPRIT LTR GALIA Arrondi du diagramme de Voronoï Résumé : La géométrie algorithmique repose généralement sur l'utilisation de nombres exacts non représentables sur un ordinateur réel. Une solution consiste à utiliser des coordonnées entières et à faire du calcul exact sur celles-ci. Cette approche implique d'arrondir les résultats d'un algorithme si l'on veut pouvoir les réinjecter dans un autre algorithme. Dans ce rapport, le cas du diagramme de Voronoï bidimensionnel est abordé: on cherche à arrondir les sommets de Voronoï aux points d'une grille en conservant les propriétés intéressantes du diagramme, telles que la planarité du plongement et la convexité des cellules. On donne une condition sur le pas de la grille pour garantir que l'arrondi des sommets de Voronoï aux points de la grille les plus proches conserve ces propriétés. On présente également des heuristiques d'arrondi pour le cas où le pas de la grille fait que l'arrondi au plus proche ne respecte pas ces propriétés. Mots-clés : géométrie algorithmique, calcul géométrique, triangulation de Delaunay, diagramme de Voronoï, coordonnées entières, calcul exact Rounding Voronoi diagram 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating Connected Facility Location with Lower and Upper Bounds via LP Rounding

We consider a lowerand upper-bounded generalization of the classical facility location problem, where each facility has a capacity (upper bound) that limits the number of clients it can serve and a lower bound on the number of clients it must serve if it is opened. We develop an LP rounding framework that exploits a Voronoi diagram-based clustering approach to derive the first bicriteria consta...

متن کامل

15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2016, June 22-24, 2016, Reykjavik, Iceland

We consider a lowerand upper-bounded generalization of the classical facility location problem, where each facility has a capacity (upper bound) that limits the number of clients it can serve and a lower bound on the number of clients it must serve if it is opened. We develop an LP rounding framework that exploits a Voronoi diagram-based clustering approach to derive the first bicriteria consta...

متن کامل

TR-2007011: Numerical Computation of Determinants with Additive Preconditioning

Various geometric and algebraic computations (e.g., of the convex hulls, Voronoi diagrams, and scalar, univariate and multivariate resultants) boil down to computing the sign or the value of the determinant of a matrix. For these tasks numerical factorizations of the input matrix is the most attractive approach under the present day computer environment provided the rounding errors are controll...

متن کامل

Spatial Density Voronoi Diagram and Construction

To fill a theory gap of Voronoi diagrams that there have been no reports of extended diagrams in spatial density so far. A new concept of spatial density Voronoi diagram was proposed. An important property was presented and proven. And a construction algorithm was presented. Spatial density can be used to indicate factors related to density such as conveyance and the traffic conditions. Some pr...

متن کامل

Data structures and algorithms to support interactive spatial analysis using dynamic Voronoi diagrams

To support the need for interactive spatial analysis, it is often necessary to rethink the data structures and algorithms underpinning applications. This paper describes the development of an interactive environment in which a number of different Voronoi models of space can be manipulated together in real time, to (1) study their behaviour, (2) select appropriate models for specific analysis ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999